Chapter - Sets

Topic-1: Sets, Types of Sets, Subsets, Power Set, Cardinal Number of Sets, **Operations on Sets**

1 MCQs with One Correct Answer

- Let $P = \{\theta : \sin \theta \cos \theta = \sqrt{2} \cos \theta\}$ and $Q = \{\theta : \sin \theta + \cos \theta = \sqrt{2} \sin \theta\}$ be two sets. Then [2011]
- (a) $P \subset Q$ and $Q P \neq \phi$ (b) $Q \not\subset P$
- (c) P ⊄ Q
- (d) P = O
- Let S={1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of S is equal to [2010]
 - (a) 25
- (b) 34

Topic-2: Venn Diagrams, De Morgan's law, Practical Problem

MCQs with One Correct Answer

- If X and Y are two sets, then $X \cap (X \cup Y)^c$ equals. [1979]
 - (a) X
- (c) b
- (d) None

MCQs with One or More than One Correct Answer

- In a college of 300 students every student reads 5 newspapers and every newspaper is read by 60 students. The number of newpapers is [1998 - 2 Marks]
 - (a) at least 30
- (b) at most 20
- (c) exactly 25
- (d) none of these

10 Subjective Problems

Suppose $A_1, A_2, \dots A_{30}$ are thirty sets each with five elements and $B_1, B_2, \dots B_n$ are n sets each with three elements. Let $\bigcup_{i=1}^{30} A_i = \bigcup_{i=1}^{n} B_i = S$. Assume that each

- element of S belongs to exactly ten of the Ai's and to exactly nine of the B_i's. Find n. [1981 - 2 Marks]
 - (i) Set A has 3 elements, and set B has 6 elements. What can be the minimum number of elements in the set $A \cup B$?
 - (ii) P, Q, R are subsets of a set A. Is the following equality
 - $R \times (P^c \cup Q^c)^c = (R \times P) \cap (R \times Q)$?
 - (iii) For any two subset X and Y of a set A define $X \circ Y = (X^c \cap Y) \cup (X \cap Y^c)$ Then for any three subsets X, Y and Z of the set A, is the following equality true.
 - $(X \circ Y) \circ Z = X \circ (Y \circ Z)$?
- An investigator interviewed 100 students to determine their preferences for the three drinks: milk(M), coffee(C) and tea (T). He reported the following: 10 students had all the three drinks M, C and T; 20 had M and C; 30 had C and T; 25 had M and T; 12 had M only; 5 had C only; and 8 had T only. Using a Venn diagram find how many did not take any of the three drinks.

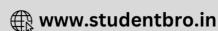
Answer Key

Topic-1: Sets, Types of Sets, Subsets, Power Set, Cardinal Number of Sets, Operations on Sets

2. (d)

Topic-2: Venn Diagrams, De Morgan's Law, Practical Problem

2. (c) 1. (c)



Hints & Solutions

Topic-1: Sets, Types of Sets, Subsets, Power Set, Cardinal Number of Sets, Operations on Sets

1. (d) $P = \{\theta : \sin \theta - \cos \theta = \sqrt{2} \cos \theta\}$

$$\Rightarrow \sin \theta = (\sqrt{2} + 1)\cos \theta \Rightarrow \tan \theta = \sqrt{2} + 1$$

Now, Q = $\{\theta : \sin \theta + \cos \theta = \sqrt{2}\sin \theta\}$

$$\Rightarrow \cos \theta = (\sqrt{2} - 1)\sin \theta \Rightarrow \tan \theta = \frac{1}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$$

- \Rightarrow tan $\theta = \sqrt{2} + 1$
- ∴ P=Q
- 2. (d) $S = \{1, 2, 3, 4\}$

Let A and B be disjoint subsets of S

Now for any element $a \in S$, has got three possibilities either, it is in A or B or none

- \Rightarrow For every element out of 4 elements there are three choices
- \therefore Total options = $3^4 = 81$

Here $A \neq B$ except when $A = B = \phi$

 \therefore 81 – 1 = 80 ordered pairs (A, B) are there for which A \neq B Hence total number of unordered pairs of disjoint

subsets =
$$\frac{80}{2} + 1 = 41$$

Topic-2: Venn Diagrams, De Morgan's Law, Practical Problem

1. (c)
$$X \cap (X \cup Y)^c = X \cap (X^c \cap Y^c) = (X \cap X^c) \cap Y^c$$

= $\phi \cap Y^c = \phi$ (:: $X \cap X^c = \phi$)

2. (c) Let the number of newspapers which are read be n. Then $60 n = (300) (5) \Rightarrow n = 25$

3. Given that
$$\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j = S$$
(i

and each A_i^s contain 5 elements So, total number of elements in $A_i = 5 \times 30 = 150$. Since each element of S belongs to exactly ten of the A_i 's.

$$\therefore n(S) = n \left[\bigcup_{i=1}^{30} A_i \right] = \frac{150}{10} = 15 \qquad ...(ii)$$

Now, each B_j^s contain 3 elements So, total number of elements in $B_i = 3 \times n = 3n$. Since each element of S belongs to exactly nine of the B_i's.

$$\therefore n(S) = n \left[\bigcup_{j=1}^{n} B_j \right] = \frac{3n}{9} \qquad \dots (iii)$$

from (ii) and (iii)

$$\frac{3n}{9} = 15 \Rightarrow n = 45.$$

4. (i) n(A) = 3, n(B) = 6

We know that, $n(A \cup B) \ge \max_{A} (n(A), n(B))$

- $\Rightarrow n(A \cup B) \ge 6$
- \therefore Minimum number of elements in the set $A \cup B$ is 6.
- (ii) $R \times (P^c \cup Q^c)^c = R \times (P \cap Q)$ = $(R \times P) \cap (R \times Q)$ [:: $(A \cup B)^c = A^c \cap B^c$]
- :. Given equality is true.
- (iii) Yes

(iii) [YoZ] (iv) [Xo(YoZ)]

- From (ii) and (iv) (XoY)oZ = Xo(YoZ)
- 5. We have

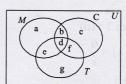
n(U) = 100, where U stands for universal set

$$n(M \cap C \cap T) = d = 10; n(M \cap C) = b + d = 20;$$

$$n(C \cap T) = d + f = 30; n(M \cap T) = d + e = 25;$$

$$\Rightarrow$$
 $b = 10, f = 20$ and $e = 15$

n (only M) = a = 12; n (only C) = c = 5; n (only T) = g = 8 Filling all the entries we obtain the Venn diagram as shown:



$$\therefore n(M \cap C \cup T) = a + b + c + d + e + f + g$$

= 12 + 10 + 5 + 15 + 10 + 20 + 8 = 80

$$\therefore n(M \cup C \cup T)' = 100 - 80 = 20$$

